A DEEPER STRUCTURE

Ard: Do you think convergence strengthens the case for Darwinian evolution?

SCM: I hope so.

Ard: Yeah, exactly.

SCM: Absolutely. I think the slight risk for Darwinian evolution is that – unlike physics, where I’m told that those that practice cosmology have successfully lost most of the visible universe in the last 20 years, busy looking for dark matter and dark energy, and suspect strongly that as and when this ‘material’ turns up, it’s going require a radical rethinking of our understanding of the basic structure of the universe – biology, I think, without sounding offensive, is slightly rested on its laurels. Whereas, in point of fact, the things I’ve been hinting at, with regards not only to convergence, but the integration of form, and the possibility that the number of outcomes is much more restricted, might point to a deeper structure of biology.

What I’m arguing is that natural selection, by in large, is a process. There’s this interconnection – this inter-conversation of different parts of the organism with each other. But there’s another aspect of this which only now is coming into full fruition: it’s a topic of so-called self-organisation. So, for instance, if you look at the way an embryo develops, of course you can see which genes are being turned on and off, which proteins are being made, which cells are dying, which cells are proliferating. But in point of fact, there’s a sort of… almost a flow in the way in which the embryo creates itself.

Now, I think that’s almost as far as people have got, because biologists don‘t tend to say, ‘Well, what makes self-organisation possible?’ It doesn’t happen by accident, and one can only assume that there are physical or chemical factors which are governing these outcomes in biology.

Ard: And these are giving the deep structures?

SCM: That’s the real possibility.

David: And that’s something outside of just the textbook version that the genes are a recipe for everything that happens? This is saying there’s some other level of organisation which constrains the genes, perhaps?

SCM: It’s very likely so. We can’t manage without genes, thank you very much indeed.

David: Well, of course.

SCM: But, of course, one’s also entitled to say, ‘Well, what is a gene?’ And we do know perfectly well that a gene is much more than simply a strand of DNA. The same gene can do different things at different times; the same part of the DNA can do different things at different times as well. So, this rather particulate view of evolution is one which, in a way, is too reductionist.

David: Again that would be contrary to the standard textbook that it’s all random, and there’s absolutely no direction. You’re suggesting there may be, not the idea of a purpose or a goal, but a direction? Would you tell us a little bit more of what you mean by that? I think I know what you mean by it.

SCM: This is tricky territory. To begin with, of course, there’s always a danger of trying to smuggle in a sort of teleology, and this is an area which biology actually struggles with continuously. I think what one can say with some fairness is that there are trends and there are a number of interesting observations suggesting that there are limits to what can be actually achieved.

Ard: You were saying earlier that there’s a directionality towards higher complexity. That’s a trend.

SCM: Yes, I think there is very good evidence that through geological time things become more interesting, if you like, more complex. The reason why people are so suspicious about trends is that, to begin with, there is this older idea of so-called orthogenesis: that evolution was doomed to go in certain directions. I mean, point of fact, that patently isn’t the case in as much as one sees a sort of self-fertile system from a rather uninteresting biosphere some 3 billion years ago to now one which is coruscating with diversity.

Correspondingly, when you see animals in particular, but in fact the argument does extend to plants at least: it’s difficult to avoid the idea that they’ve got some sense of intentionality. They know what they’re doing, and it’s tempting to extrapolate this into ideas of purpose, and I think the problem here is that it’s a philosophical discussion.

So far as biology is concerned, so far as Darwinian evolution is concerned, it is completely and utterly blind. When Richard Dawkins refers to ‘The Blind Watchmaker’, I absolutely agree with him. Evolution, per se, does not know where it’s going. But, that does not necessarily rule out the possibility that the organisation of the universe at large is predisposed to life, is predisposed to evolution, and as I’ve said in a number of other contexts, in one way, evolution is simply the mechanism by which the universe becomes self-aware.

David: So that major trend you’re talking about… when you talk about trends, it’s the trend towards greater complexity and greater mind, isn’t it? That’s the one you keep coming back to.

SCM: In part, but I think Ard, as a physicist, would agree that if we look at the physical organisation of the universe, it is very, very highly ordered indeed. And the paradox, and I think it’s actually an interesting question, is what is it about life, what is this thing, this sort of extraordinary thing which hovers between being chaotic, gas-like behaviour, where nothing ever settles down, to an immobile crystalline-like form?

And life, in this sort of metaphor, sort of describes this incredibly narrow line. It’s sort of tip-toeing all the way along like this.

David: Yeah.

SCM: And yet it’s that expression of the universe which then looks back at the stars and says, ‘What on Earth are we doing here?’ And this is non-trivial.

David: That description of life being in between too rigid and too chaotic… that obviously appeals to you as a biologist. Does it work for you as a physicist?

Ard: Life is very different from anything we see in physics. So in physics we have things like crystals that are solid and gases that are chaotic and other chaotic systems, and life is kind of on the edge of chaos and order. And there is something amazing, really completely in a different category than anything we have in the physical sciences, which is what makes it beautiful and interesting.

So I think we understand some really important things, like the Darwinian way it develops over time, but there are bigger questions of, why did it develop this way not that way? Convergence does point towards there being some kind of deeper structure; it has to. There’s no way, given the number of possibilities that it could theoretically go down, that there isn’t some other principles that are…

David: Yes, I was going to say… both of you keep using this ‘deeper structure’. What do you mean by this ‘deeper structure’? It’s like you two know something that I don’t.

Ard: Well, we don’t. I got that word from Simon. The ‘deeper structure’ basically means we know something is there, but we have no idea what it is.

David: But that it has rules or structure, or rules that we haven’t discovered yet? Is that what you’re saying?

Ard: I think it tells us that we don’t know the whole story yet, but we know parts of the story.

David: It’s more than that, though?

SCM: Well, in my limited experience, the rules are the things you formulate at the end. Scientists don’t go out there and say, ‘This is a rule and now I’m going to set out and prove it.’ And if we think about what life is, as Ard says, it’s got this sort of fantastic balance between total disorder and over-order.